Nano Conductor

Vorticity and divergence at scales down to 200 km within and around the polar cyclones of Jupiter


  • Orton, G. S. et al. The first close-up pictures of Jupiter’s polar areas: outcomes from the Juno mission JunoCam instrument. Geophys. Res. Lett. 44, 4599–4606 (2017).

    ADS 
    Article 

    Google Scholar 

  • Adriani, A. et al. Clusters of cyclones encircling Jupiter’s poles. Nature 555, 216–219 (2018).

  • Tabataba-Vakili, F. et al. Long-term monitoring of circumpolar cyclones on Jupiter from polar observations with JunoCam. Icarus 335, 113405 (2020).

    Article 

    Google Scholar 

  • Adriani, A. et al. Two-year observations of the Jupiter polar areas by JIRAM on board Juno. J. Geophys. Res. https://doi.org/10.1029/2019JE006098 (2020).

  • Mura, A., Adriani, A. & Bracco, A. Oscillations and stability of the Jupiter polar cyclones. Geophys. Res. Lett. 48, e2021GL094235. https://doi.org/10.1029/2021GL0942235 (2021).

  • Grassi, D. et al. First estimate of wind fields within the Jupiter polar areas from JIRAM-Juno pictures. J. Geophys. Res. Planets 123, 1511–1524 (2018).

    ADS 
    Article 

    Google Scholar 

  • Orton, G. S. & Yanamandra-Fisher, P. A. Saturn’s temperature area from high-resolution middle-infrared imaging. Science 307, 696–698 (2005).

    ADS 
    Article 

    Google Scholar 

  • Dyudina, U. A. et al. Dynamics of Saturn’s south polar vortex. Science 319, 1801 (2008).

    ADS 
    Article 

    Google Scholar 

  • Dyudina, U. A. et al. Saturn’s south polar vortex in comparison with different massive vortices within the Solar System. Icarus 202, 240–248 (2009).

    ADS 
    Article 

    Google Scholar 

  • Sommeria, J., Meyers, S. & Swinney, H. Laboratory mannequin of a planetary eastward jet. Nature 337, 58–61 (1989).

    ADS 
    Article 

    Google Scholar 

  • Allison, M., Godfrey, D. & Beebe, R. A wave-dynamic interpretation of Saturn’s polar hexagon. Science 247, 1061–1063 (1990).

    ADS 
    Article 

    Google Scholar 

  • Aguiar, A. C. B., Read, P. L., Wordsworth, R. D., Salter, T. & Yamazaki, Y. H. A laboratory mannequin of Saturn’s North Polar Hexagon. Icarus 206, 755–763 (2010).

    ADS 
    Article 

    Google Scholar 

  • Sanchez-Lavega, A. et al. The long- time period regular movement of Saturn’s hexagon and the steadiness of its enclosed jet stream underneath seasonal modifications. Geophys. Res. Lett. 41, 1425–1431 (2014).

    ADS 
    Article 

    Google Scholar 

  • Morales-Juberias, R., Sayanagi, Okay. M., Simon, A. A., Fletcher, L. N. & Cosentino, R. G. Meandering shallow atmospheric jet as a mannequin of Saturn’s north-polar hexagon. Astrophys. J. Lett. 806, 1–6 (2015).

  • Scott, R. Okay. Polar accumulation of cyclonic vorticity. Geophys. Astrophys. Fluid Dynam. 105, 409–420 (2011).

    ADS 
    MathSciInternet 
    Article 

    Google Scholar 

  • O’Neill, M. E., Emanuel, Okay. A. & Flierl, G. R. Polar vortex formation in giant-planet atmospheres dues to moist convection. Nat. Geosci. 8, 523–526 (2015).

    ADS 
    Article 

    Google Scholar 

  • O’Neill, M. E., Emanuel, Okay. A. & Flierl, G. R. Weak jets and robust cyclones: shallow-water modeling of large planet polar caps. J. Atmos. Sci. 73, 1841–1855 (2016).

    ADS 
    Article 

    Google Scholar 

  • Brueshaber, S. R., Sayanagi, Okay. M. & Dowling, T. E. Dynamical regimes of large planet polar vortices. Icarus 323, 46–61 (2019).

    ADS 
    Article 

    Google Scholar 

  • Siegelman, L., Young, W. R. & Ingersoll, A. P. Polar vortex crystals: emergence and construction. Proc. Natl Acad. Sci. USA 119, e2120486119 (2022).

    MathSciInternet 
    Article 

    Google Scholar 

  • Siegelman, L. et al. Moist convection drives an upscale vitality switch at Jovian excessive latitudes. Nat. Phys. 18, 357–361 (2022).

  • Li, C., Ingersoll, A. P., Klipfel, A. P. & Brettle, H. Modeling the steadiness of polygonal patterns of vortices on the poles of Jupiter as revealed by the Juno spacecraft. Proc. Natl Acad. Sci. USA 117, 24082–24087 (2020).

    ADS 
    Article 

    Google Scholar 

  • Thomson, S. I. & McIntyre, M. E. Jupiter’s unearthly jets: a brand new turbulent mannequin exhibiting statistical steadiness with out large-scale dissipation. J. Atmos. Sci. 73, 1119–1141 (2016).

    ADS 
    Article 

    Google Scholar 

  • Rubio, A. M., Julien, Okay., Knobloch, E. & Weiss, J. B. Upscale vitality switch in three-dimensional quickly rotating turbulent convection. Phys. Rev. Lett. 112, 144501 (2014).

    ADS 
    Article 

    Google Scholar 

  • Novi, L., von Hardenberg, J., Hughes, D. W., Provenzale, A. & Spiegel, E. A. Rapidly rotating Rayleigh-Benard convection with a tilted axis. Phys. Rev. E 99, 053116 (2019).

    ADS 
    Article 

    Google Scholar 

  • Yadav, R. Okay., Heimpel, M. & Bloxham, J. Deep convection-driven vortex formation on Jupiter and Saturn. Sci. Adv. 6, eabb9298 (2020).

    ADS 
    Article 

    Google Scholar 

  • Kapyla, P. J., Mantere, M. J. & Hackman, T. Starspots on account of large-scale vortices in rotating turbulent convection. Astrophys. J. 742, 34 (2011).

    ADS 
    Article 

    Google Scholar 

  • Heimpel, M., Gastine, T. & Wicht, J. Simulation of deep-seated zonal jets and shallow vortices in gasoline large atmospheres. Nat. Geosci. 9, 19–23 (2016).

  • Cai, T., Chan, Okay. L. & Mayr, H. G. Deep intently packed long-lived cyclones on Jupiter’s poles. Planet. Sci. J. 2, 81 (2021).

    Article 

    Google Scholar 

  • Ingersoll, A. & Cuzzi, J. Dynamics of Jupiter’s cloud bands. J. Atmos. Sci. 26, 981–985 (1969).

  • Limaye, S. Jupiter: new estimates of the imply zonal circulate on the cloud stage. Icarus 65, 335–352 (1986).

    ADS 
    Article 

    Google Scholar 

  • Li, L. M. et al. Life cycles of spots on Jupiter from Cassini pictures. Icarus 172, 9–23 (2004).

    ADS 
    Article 

    Google Scholar 

  • Garcia-Melendo, E., Perez-Hoyos, S., Sanchez-Lavega, A. & Hueso, R. Saturn’s zonal wind profile in 2004–2009 from Cassini ISS pictures and its long-term variability. Icarus 215, 62–74 (2011).

    ADS 
    Article 

    Google Scholar 

  • Dowling, T. A relationship between potential vorticity and zonal wind on Jupiter. J. Atmos. Sci. 50, 14–22 (1993).

    ADS 
    Article 

    Google Scholar 

  • Achterberg, R. & Ingersoll, A. A standard-mode method to Jovian atmospheric dynamics. J. Atmos. Sci. 46, 2448–2462 (1989).

    ADS 
    Article 

    Google Scholar 

  • Wong, M. H., de Pater, I., Asay-Davis, X., Marcus, P. S. & Go, C. Y. Vertical construction of Jupiter’s Oval BA earlier than and after it reddened: what modified? Icarus 215, 211–225 (2011).

    ADS 
    Article 

    Google Scholar 

  • Hammel, H. et al. HST Imaging of atmospheric phenomena created by the influence of Comet Shoemaker-Levy-9. Science 267, 1288–1296 (1995).

    ADS 
    Article 

    Google Scholar 

  • Rhines, P. Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417–443 (1975).

    ADS 
    MATH 
    Article 

    Google Scholar 

  • Theiss, J. Equatorward vitality cascade, important latitude, and the predominance of cyclonic vortices in geostrophic turbulence. J. Phys. Oceanogr. 34, 1663–1678 (2004).

    ADS 
    Article 

    Google Scholar 

  • Scott, R. Okay. & Polvani, L. M. Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the large planets. J. Atmos. Sci. 64, 3158–3176 (2007).

    ADS 
    Article 

    Google Scholar 

  • Mied, R. & Lindemann, G. Propagation and evolution of cyclonic Gulf-Stream rings. J. Phys. Oceanogr. 9, 1183–1206 (1979).

    ADS 
    Article 

    Google Scholar 

  • Chassignet, E. & Cushman-Roisin, B. On the affect of a decrease layer on the propagation of nonlinear oceanic eddies. J. Phys. Oceanogr. 21, 939–957 (1991).

    ADS 
    Article 

    Google Scholar 

  • Adriani, A. et al. JIRAM, the Jovian Infrared Auroral Mapper. Space Sci. Rev. 213, 393–446 (2017).

    ADS 
    Article 

    Google Scholar 

  • Garcia-Ortega, E., Lopez, L. & Sanchez, J. L. Diagnosis and sensitivity research of two extreme storm occasions within the Southeastern Andes. Atmos. Res. 93, 161–178 (2009).

    Article 

    Google Scholar 

  • Marion, G. R. & Trapp, R. J. The dynamical coupling of convective updrafts, downdrafts, and chilly swimming pools in simulated supercell thunderstorms. J. Geophys. Res. Atmos. 124, 664–683 (2019).

    ADS 
    Article 

    Google Scholar 

  • Solov’ev, A. A., Parfinenko, L. D., Efremov, V. I., Kirichek, E. A. & Korolkova, O. A. Structure of photosphere underneath excessive decision: granules, faculae, micropores, intergranular lanes. Astrophys. Space Sci. 364, 222 (2019).

    ADS 
    Article 

    Google Scholar 

  • Juckes, M. Quasi-geostrophic dynamics of the tropopause. J. Atmos. Sci. 51, 2756–2768 (1994).

    ADS 
    Article 

    Google Scholar 

  • Held, I. M., Pierrehumbert, R. T., Garner, S. T. & Swanson, A. Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 1–20 (1995).

    ADS 
    MathSciInternet 
    MATH 
    Article 

    Google Scholar 

  • Lapeyre, G. & Klein, P. Dynamics of the higher oceanic layers when it comes to floor quasigeostrophy concept. J. Phys. Oceanogr. 36, 165–176 (2006).

    ADS 
    MathSciInternet 
    Article 

    Google Scholar 

  • Lapeyre, G. Surface quasi-geostrophy. Fluids 2, 7–28 (2017).

    ADS 
    Article 

    Google Scholar 

  • Young, R. M. B. & Read, P. L. Forward and inverse kinetic vitality cascades in Jupiter’s turbulent climate layer. Nat. Phys. 13, 1135–1140 (2017).

    Article 

    Google Scholar 

  • Gonzalez, R. C. & Woods, R. E. Digital Image Processing (Pearson, 2016).

  • Scarica, P. et al. Stability of the Juoter southern polar vortices inspected by means of vorticity utilizing Juno/JIRAM information. J. Geophys. Res., Planets, https://doi.org/10.1029/2021JE007159 (2021).

    Article 

    Google Scholar 

  • Exit mobile version